Université de Provence 2006–2007

Corrigé des ateliers de mathématiques

Jeudi 12 octobre 2006

Ensembles - Relations - Fonctions

Exercice 1. Soient quatre ensembles E, E', F, F'. Démontrer que

$$(E \times E') \cap (F \times F') = (E \cap F) \times (E' \cap F').$$

A-t-on une propriété analogue avec la réunion?

Réponse: Soit $(x,y) \in (E \times E') \cap (F \times F')$. Compte tenu de la définition des symboles \cap et \times , ceci se traduit par:

$$(x,y) \in E \times E'$$
 et $(x,y) \in F \times F'$
 $x \in E$ et $y \in E'$ et $x \in F$ et $y \in F'$.

C'est donc équivalent à

$$x \in E \cap F$$
 et $y \in E' \cap F'$
 $(x, y) \in (E \cap F) \times (E' \cap F').$

Les ensembles $(E \times E') \cap (F \times F')$ et $(E \cap F) \times (E' \cap F')$ ont donc mêmes éléments, c'est à dire ils sont égaux.

A-t-on une propriété analogue avec la réunion, c'est à dire $(E \times E') \cup (F \times F')$ est-il un ensemble produit?

On appelle ensemble produit un ensemble de la forme $A \times B$. Il s'agit donc de savoir si, pour tous ensembles E, E', F, F', il existe des ensembles A, B tels que $(E \times E') \cup (F \times F') = A \times B$.

Ceci n'est pas vrai: on peut trouver des ensembles simples, par exemple $E = \{1, 2\}$, $E' = \{3, 4\}$, $F = \{5, 6\}$, $F' = \{7, 8\}$, tels que l'ensemble

$$(E \times E') \cup (F \times F') = \{(1,3), (1,4), (2,3), (2,4), (5,7), (5,8), (6,7), (6,8)\}$$

ne soit pas de la forme $A \times B$ puisque, en supposant que ces deux ensembles soient équix, on aurait:

$$1 \in A \ (du \ fait \ que \ (1,3) \in (E \times E') \cup (F \times F') \ et \ (E \times E') \cup (F \times F') = A \times B)$$

$$7 \in B \ (du \ fait \ que \ (5,7) \in (E \times E') \cup (F \times F') \ et \ (E \times E') \cup (F \times F') = A \times B)$$

 $donc(1,7) \in A \times B$, et $(1,7) \notin (E \times E') \cup (F \times F')$, ce qui contredit l'égalité de ces deux ensembles.

Exercice 2. Soient A, B, C trois parties d'un ensemble E. Démontrer chacune des équivalences suivantes:

$$A \subset B \Leftrightarrow A \cup B = B, \qquad A \subset B \Leftrightarrow A \cap B = A,$$

$$A \subset B \Leftrightarrow E \setminus B \subset E \setminus A, \qquad A \subset B \Leftrightarrow A \cap (E \setminus B) = \emptyset.$$

Réponse: Par exemple pour démontrer l'équivalence $A \subset B \Leftrightarrow A \cup B = B$, il y a trois démonstrations à faire:

- Supposons $A \subset B$. Soit $x \in A \cup B$; x appartient à A ou à B, mais s'il appartient à A il appartient aussi à B puisqu'on a supposé $A \subset B$. Finalement cet x appartient forcément à B. On a prouvé que les éléments de $A \cup B$ appartiennent tous à B, c'est à dire $A \cup B \subseteq B$.
- Soit $y \in B$, alors $y \in A \cup B$ (parce que $A \cup B$ est l'ensemble des éléments de E qui appartiennent à A ou B). Ceci prouve l'inclusion $B \subseteq A \cup B$ et, compte tenu de l'inclusion qu'on a précédemment démontrée, $A \cup B = B$.
- Supposons maintenant $A \cup B = B$, il s'agit de démontrer $A \subset B$. Or les élément de A appartiennent à $A \cup B$, qu'on a supposé égal à B, on a donc bien $A \subset B$.

Exercice 3. Sur \mathbb{N} on définit la relation \mathcal{R} en posant:

$$x\mathcal{R}y$$
 si $|x-y|$ est un nombre pair.

- a) Est-ce une relation d'équivalence?
- b) Quelles sont les classes d'équivalence?

Réponse: a) |x-y| est un nombre pair si et seulement si x-y est un nombre pair (positif ou négatif), c'est à dire si et seulement si il existe un entier $k \in \mathbb{Z}$ tel que x-y=2k. La relation \mathbb{R} est donc

- réflexive: x x est bien égal à deux fois un entier puisque $x x = 2 \cdot 0$, donc xRx;
- symétrique: x y = 2k implique y x = 2(-k) (= deux fois un entier) donc yRx;
- transitive: $si\ x-y=2k\ et\ y-zy=2k'\ alors\ x-z=x-y+y-z=2(k+k'),\ ce\ qui\ prouve\ que\ x\mathcal{R}z.$

On conclut que cette relation est une relation d'équivalence.

b) Les classes d'équivalence sont:

l'ensemble des $x \in \mathbb{N}$ tels que $x\mathcal{R}0$, c'est à dire l'ensemble des nombres pairs;

l'ensemble des $x \in \mathbb{N}$ tels que xR1, c'est à dire l'ensemble des nombres impairs.

Exercice 4. Soit E un ensemble non vide, et F une partie de E. Sur $\mathcal{P}(E)$, on définit la relation \mathcal{R}_F en posant:

$$A \mathcal{R}_F B$$
 si $A \cap F = B \cap F$.

- a) Est-ce une relation d'équivalence? Préciser la classe d'équivalence de \emptyset et celle de F.
- b) Existe-t-il une partie F de E, telle que $\{\emptyset, E\}$ soit une des classes d'équivalence associées à la relation \mathcal{R}_F ?

Réponse: a) La relation \mathcal{R}_F est

- réflexive: $A \cap F = A \cap F$ donc $A\mathcal{R}_F A$;
- symétrique: si $A \mathcal{R}_F B$ alors $A \cap F = B \cap F$, donc $B \cap F = A \cap F$ c'est à dire $B\mathcal{R}_F A$;

• transitive: si $A \mathcal{R}_F B$ et $B \mathcal{R}_F C$ alors $A \cap F = B \cap F = C \cap F$ d'où $A \mathcal{R}_F C$.

On conclut que \mathcal{R}_F est une relation d'équivalence.

La classe d'équivalence de \emptyset est l'ensemble des A tels que A \mathcal{R}_F \emptyset c'est à dire $A \cap F = \emptyset \cap F = \emptyset$. C'est $\mathcal{P}(E \setminus F)$ (= ensemble des parties du complémentaire de F).

La classe d'équivalence de F est l'ensemble des A tels que A \mathcal{R}_F F c'est à dire $A \cap F = F \cap F = F$. C'est l'ensemble des parties de E qui contiennent F.

b) Si $\{\emptyset, E\}$ est une classe d'équivalence, on a $\emptyset \mathcal{R}_F$ E c'est à dire $\emptyset \cap F = E \cap F$, ce qui fait $\emptyset = F$. Maintenant, pour que $\{\emptyset, E\}$ soit bien une classe d'équivalence, il faut qu'aucun autre sous-ensemble A de E ne vérifie $A \mathcal{R}_F \emptyset$ ni $A \mathcal{R}_F E$. C'est évidemment le cas si E n'a qu'un élément, parce qu'alors A est forcément égal à \emptyset ou E.

Supposons que E ait au moins deux éléments a et b; alors l'ensemble $A = \{a\}$ vérifie A \mathcal{R}_F \emptyset puisque $A \cap F = \emptyset \cap F$ (ensemble vide, compte tenu que $F = \emptyset$). C'est donc impossible que E ait au moins deux éléments, on conclut qu'il n'a qu'un élément.

Exercice 5. Soit une application $f: E \to F$, et soient A et B deux parties de E.

Démontrer l'égalité $f(A \cup B) = f(A) \cup f(B)$.

Démontrer que l'égalité $f(A \cap B) = f(A) \cap f(B)$ est fausse pour certaines applications, mais qu'elle est vraie pour les applications injectives.

Réponse: • Soit $y \in f(A \cup B)$. Il existe $x \in A \cup B$ tel que y = f(x), on a donc $y \in f(A)$ (si $x \in A$) et $y \in f(B)$ (si $x \in B$), et finalement $y \in f(A) \cup f(B)$. Ceci prouve l'inclusion $f(A \cup B) \subseteq f(A) \cup f(B)$.

• Soit $y \in f(A) \cup f(B)$. Il existe $x \in A$ tel que y = f(x), ou il existe $x \in B$ tel que y = f(x). Il existe donc $x \in A \cup B$ tel que y = f(x), c'est à dire y appartient à $f(A \cup B)$. Ceci prouve l'inclusion $f(A) \cup f(B) \subseteq f(A \cup B)$ et, compte tenu de l'inclusion précédente, on a bien

$$f(A \cup B) = f(A) \cup f(B).$$

L'égalité $f(A \cap B) = f(A) \cap f(B)$ est fausse pour l'application $f(x) = x^2$, dans le cas où $A = \mathbb{R}^-$ et $B = \mathbb{R}^+$ par exemple: dans l'ensemble $f(A \cap B)$ il n'y a que f(0) = 0, tandis que $f(A) \cap f(B) = \mathbb{R}^+$.

Soit maintenant f une application injective.

- On a $f(A \cap B) \subseteq f(A)$ (parce que $A \cap B \subseteq A$) et on a aussi $f(A \cap B) \subseteq f(B)$ (parce que $A \cap B \subseteq B$), par conséquent $f(A \cap B) \subseteq f(A) \cap f(B)$.
- Soit $y \in f(A) \cap f(B)$. Il existe $x \in A$ tel que y = f(x) et il existe $x' \in B$ tel que y = f(x'). Les éléments x et x' sont égaux (parce que f est injective et f(x) = f(x') = y). Il existe donc $x = x' \in A \cap B$ tel que y = f(x), c'est à dire y appartient à $f(A \cap B)$. Ceci prouve l'inclusion $f(A) \cap f(B) \subseteq f(A \cap B)$ et, compte tenu de l'inclusion précédente, on a bien

$$f(A \cap B) = f(A) \cap f(B).$$

1

Pour consulter les archives des ateliers:

http://site.voila.fr/a.thomas/

et celles de Techniques Mathématiques de Base:

http://www.cmi.univ-mrs.fr/~jlerous/

Calculette (pour les primitives):

http://integrals.wolfram.com/

Renseignements sur la licence, les emplois du temps etc:

http://www.univ-provence.fr/licence

Programmes des licences et des masters:

http://www.cmi.univ-mrs.fr/lmd/