MATHEMATIQUES POUR PC 2 Planche 5 : Courbes paramétrées

Exercice 1 a) Représenter sur un même tableau les variations des fonctions $x(t) = t^2 + t^4$ et $y(t) = t^3 - 3t$ pour $t \in [0, +\infty[$.

b) Vérifier que le point de coordonnées (x(-t), y(-t)) est symétrique du point de coordonnées (x(t), y(t)) par rapport à l'axe des x.

c) Soit (C) la courbe d'équations paramétriques

$$\begin{cases} x(t) = t^2 + t^4 \\ y(t) = t^3 - 3t \end{cases}$$

Quelle est la pente de la tangente au point $M_0(x(0), y(0))$ et au point $M_1(x(1), y(1))$? Quelles sont les intersections de la courbe (C) avec l'axe des x? Placer ces points ainsi que le point $M_2(x(2), y(2))$, tracer la courbe pour $t \in [0, +\infty[$ et la compléter par symétrie par rapport à l'axe des x.

Exercice 2 a) Représenter sur un même tableau les variations des fonctions $x(t) = \cos t$ et $y(t) = \sin(2t)$ pour $t \in [0, \pi]$.

b) Vérifier que le point de coordonnées (x(-t), y(-t)) est symétrique du point de coordonnées (x(t), y(t)) par rapport à l'axe des x.

c) Soit (C) la courbe d'équations paramétriques

$$\left\{ \begin{array}{l} x(t) = \cos t \\ y(t) = \sin(2t) \end{array} \right.$$

Quelle est la pente de la tangente au point M(x(t),y(t)) pour $t=0,\,t=\frac{\pi}{4},\,t=\frac{3\pi}{4}$ et $t=\pi$? Placer ces quatre points et les quatre tangentes correspondantes, puis tracer la courbe pour $t\in[0,\pi]$ et la compléter par symétrie par rapport à l'axe des x.

Exercice 3 Le Folium de Descartes est la courbe définie paramétriquement par les équations

$$\begin{cases} x(t) = \frac{t}{1+t^3} \\ y(t) = \frac{t^2}{1+t^3} \end{cases}$$

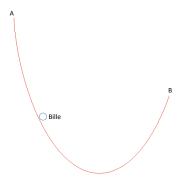
a) Vérifier que le point $M'\left(x\left(\frac{1}{t}\right),y\left(\frac{1}{t}\right)\right)$ est symétrique du point $M\left(x(t),y(t)\right)$ par rapport à la bissectrice principale des deux axes.

b) Représenter sur un même tableau les variations des fonctions x(t) et y(t) pour $t \in]-1,1]$.

c) Déterminer $\lim_{t \to -1} x(t)$, $\lim_{t \to -1} y(t)$ et $\lim_{t \to -1} (x(t) + y(t))$ et interpréter graphiquement les résultats obtenus.

d) Tracer la courbe paramétrée par x(t) et y(t) pour $t \in]-1,1]$, puis la compléter par symétrie par rapport à la bissectrice.

Exercice 4 On sait que le plus court chemin pour aller d'un point A à un point B est la ligne droite. Mais ce n'est pas le chemin le plus rapide pour une bille qui roulerait sans frottement de A vers B:



On démontre (voir http://fr.wikipedia.org/wiki/Courbe_brachistochrone) que la forme de la courbe qui permet à la bille d'atteindre B le plus rapidement possible est donnée par les équations paramétriques

$$\begin{cases} x(t) = t - \sin t \\ y(t) = \cos t. \end{cases}$$

Faire le tableau de variations et tracer la courbe pour $t \in [0, 2\pi]$ (les pentes des tangentes aux bornes sont $\lim_{t \to 0} \frac{y'(t)}{x'(t)}$ et $\lim_{t \to 2\pi} \frac{y'(t)}{x'(t)}$).