MATHEMATIQUES 01

Première session – 17 Décembre 2013

Calculette et documents non autorisés

Durée: 2 heures

Trouver la solution de l'équation différentielle : (E) $y'(t) + 4\cos(2t)\sqrt{y(t)} = 0$, qui vérifie $y(\frac{\pi}{4}) = 0$.

Réponse : L'équation équivaut à $\frac{y'(t)}{2\sqrt{y(t)}} = -2\cos(2t)$. En intégrant on obtient

$$\sqrt{y(t)} = -\sin(2t) + C \Rightarrow y(t) = (C - \sin(2t))^2$$
 (C constante).

Remplaçons t par $\frac{\pi}{4}$, on obtient $y\left(\frac{\pi}{4}\right) = \left(C - \sin\left(\frac{\pi}{2}\right)\right)^2$, ce qui fait d'après l'énoncé $0 = (C-1)^2$, d'où C = 1 et $y(t) = (1 - \sin(2t))^2$.

EXERCICE 2

1. Soit $I(t) = \int_0^t e^{-2x} \sin(x) dx$.

1.1. Donner le domaine de définition de la fonction I.

Réponse : \mathbb{R} puisque l'exponentielle et le sinus sont définis sur \mathbb{R} .

1.2. A l'aide de deux intégrations par parties, calculer I(t).

Réponse : Les deux intégrations par parties donnent deux relations entre l'intégrale I(t) et l'intégrale $J(t) = \int_0^t e^{-2x} \cos(x) dx :$

$$I(t) = [-e^{-2x}\cos(x)]_0^t - 2J(t)$$
 et $J(t) = [e^{-2x}\sin(x)]_0^t + 2I(t)$.

On a donc $I(t) = -e^{-2t}\cos(t) + 1 - 2e^{-2t}\sin(t) - 4I(t)$, ce qui fait $5I(t) = -e^{-2t}\cos(t) + 1 - 2e^{-2t}\sin(t)$ et

$$I(t) = -\frac{1}{5}e^{-2t}\cos(t) + \frac{1}{5} - \frac{2}{5}e^{-2t}\sin(t)$$

On considère maintenant l'équation différentielle :

(E)
$$y'(t) - 2y(t) = \sin(t)$$
.

2. Calculer la solution générale de l'équation différentielle homogène associée :

(e)
$$y'(t) - 2y(t) = 0$$
.

Réponse : $y_h(t) = Ce^{2t}$ avec C constante.

3. Calculer une solution particulière y_p de (E) de la forme $a\cos(t) + b\sin(t)$, où a et b sont deux constantes. Réponse : $(E) \Rightarrow (-a\sin(t) + b\cos(t)) - 2(a\cos(t) + b\sin(t)) = sin(t)$. Cela fait -a - 2b = 1 et b - 2a = 0. Donc $a = -\frac{1}{5}$ et $b = -\frac{2}{5}$, et $y_p(t) = -\frac{1}{5}\cos(t) - \frac{2}{5}\sin(t)$.

Donc
$$a = -\frac{1}{5}$$
 et $b = -\frac{2}{5}$, et $y_p(t) = -\frac{1}{5}\cos(t) - \frac{2}{5}\sin(t)$

4. En utilisant la méthode de la variation de la constante, retrouver cette solution particulière (on peut utiliser la primitive trouvée en (1.2)).

Réponse : On remplace y(t) par $C(t)e^{2t}$ dans l'équation (E). Après simplification on arrive à $C'(t)e^{2t} = \sin(t)$, d'où $C'(t) = \sin(t)e^{-2t}$ et donc, d'après le résultat de la question (1.2), $C(t) = -\frac{1}{5}e^{-2t}\cos(t) - \frac{2}{5}e^{-2t}\sin(t) + \text{constante}$. On choisit la constante nulle et on retrouve (pour y(t)) le résultat de la question 3.

5. En déduire la solution de (E) qui vérifie y(0) = 0.

Réponse:
$$y(0) = y_p(0) + y_h(0) = 0$$
 ce qui fait $-\frac{1}{5} + C = 0$, donc $C = \frac{1}{5}$ et $y(t) = -\frac{1}{5}\cos(t) - \frac{2}{5}\sin(t) + \frac{1}{5}e^{2t}$

EXERCICE 3

- 1. Déterminer l'intervalle I tel que $x \in I \Leftrightarrow |x-6| < 3$. Réponse : La distance de x à 6 est plus petite que 3, I =]3;9[
- **2.** Soit (A) l'affirmation suivante : $\forall x \in \mathbb{R}, |x-6| < 3 \Rightarrow |3x-18| < 6$. Ecrire la négation de (A), puis démontrer que (A) est vraie ou bien que sa négation est vraie.

Réponse : La négation de (A) est $\exists x \in \mathbb{R}, |x-6| < 3$ et $|3x-18| \ge 6$. Elle est vraie parce que $|3x-18| \ge 6$ équivaut à $|x-6| \ge 2$, qui n'est pas incompatible avec |x-6| < 3.

EXERCICE 4

Soient
$$f: [-1;1] \rightarrow [1/e;1]$$
 et $g: [-1;1] \rightarrow [1/e;e]$
$$x \mapsto f(x) = \exp\left(\frac{-\arccos(x)}{\pi}\right)$$

$$x \mapsto g(x) = \exp\left(\frac{2\arcsin(x)}{\pi}\right)$$

1. Calculer les dérivées de f et de g.

Réponse :
$$f'(x) = \frac{\exp\left(\frac{-\arccos(x)}{\pi}\right)}{\pi\sqrt{1-x^2}}$$
 et $g'(x) = \frac{2\exp\left(\frac{2\arcsin(x)}{\pi}\right)}{\pi\sqrt{1-x^2}}$ avec $x \neq \pm 1$.

2. Montrer que f et g sont bijectives, et donner leur fonction réciproque.

Réponse : Leurs dérivées sont strictement positives parce que la fonction exponentielle est strictement positive, de même que $\sqrt{1-x^2}$ pour $x\in]-1;1[$. Donc f est une bijection de [-1;1] sur [f(-1);f(1)] et g est une bijection de [-1;1] sur [g(-1);g(1)]. Les fonctions réciproques sont $f^{-1}(t)=\cos{(\pi \ln(t))}$ et $g^{-1}(t)=\sin{(\frac{\pi}{2}\ln(t))}$.

3. Donner la dérivée de g^{-1} .

Réponse : C'est la dérivée de sin
$$\left(\frac{\pi}{2}\ln(t)\right)$$
, elle vaut $\boxed{\frac{\pi}{2t}\cos\left(\frac{\pi}{2}\ln(t)\right)}$

4. Résoudre f(x) = g(x).

Réponse : Équivaut à $-\arccos(x) = 2\arcsin(x)$, ce qui fait

$$\arccos(x) + 2\arcsin(x) = 0.$$

Mais on sait que $\arccos(x) + \arcsin(x) = \frac{\pi}{2}$, on a donc $\frac{\pi}{2} + \arcsin(x) = 0$ et x = -1.

EXERCICE 5

On considère l'équation différentielle :

(E)
$$y''(t) + y'(t) - 2y(t) = t^2 - 1$$
.

1. Calculer la solution générale de l'équation différentielle homogène associée :

(e)
$$y''(t) + y'(t) - 2y(t) = 0$$
.

Réponse : Les nombres réels 1 et -2 sont solutions de l'équation $x^2 + x - 2 = 0$, donc la fonction $y_h(t) = Ae^t + Be^{-2t}$ avec A et B constantes, est solution de y''(t) + y'(t) - 2y(t) = 0.

 $\overline{\mathbf{2}}$. Chercher une solution particulière de (E) sous la forme d'un polynôme du second degré.

Réponse :
$$y(t) = at^2 + bt + c$$
 et $y'(t) = 2at + b$ et $y''(t) = 2a$.

$$y''(t) + y'(t) - 2y(t) = -2at^2 + (2a - 2b)t + (2a + b - 2c) \text{ est égal à } t^2 - 1 \text{ si } a = b = -\frac{1}{2} \text{ et } c = -\frac{1}{4}, \text{ ce qui fait } \boxed{y_p(t) = -\frac{1}{2}t^2 - \frac{1}{2}t - \frac{1}{4}}.$$

3. Trouver la solution de (E) qui vérifie y(0) = -1/4 et y'(0) = 1/2.

Réponse :
$$y(0) = y_p(0) + y_h(0) = -1/4$$
 et $y'(0) = y_p'(0) + y_h'(0) = 1/2$, on a donc $-1/4 + A + B = -1/4$ et $-1/2 + A - 2B = 1/2$ ce qui fait $A = 1/3$, $B = -1/3$ et $y(t) = -\frac{1}{2}t^2 - \frac{1}{2}t - \frac{1}{4} + \frac{1}{3}e^t - \frac{1}{3}e^{-2t}$.