Faculté des sciences, Saint-Charles

Intégration 1

Partiel du 21 mars 2001 Sans document ni calculatrice

Note : la copie doit être bien présentée, lisible et propre. Les questions rédigées dans un style télégraphique seront affectées d'un nombre de points inférieur à celui du barème. Enfin, il sera enlevé un cinquième de point par faute d'orthographe.

Questions de cours

1. Soit [a, b] un intervalle compact de R. Rappeler les définitions de

0, 5 • jauge sur [a, b], 0, 5 • subdivision pointée de [a, b], A • subdivision δ -fine.

1 + 2 2. Énoncer et démontrer la formule d'intégration par parties.

Exercices

1. Calculer les primitives suivantes :

2. On considère une subdivision pointée \mathcal{P} de [0,1] en deux intervalles :

$$\mathcal{P} = \{(\mathbf{I}_1, t_1), (\mathbf{I}_2, t_2)\},$$

et on suppose que t_1 est le milieu de I_1 . Comment choisir I_1, I_2 et t_2 pour que $\mathcal P$ soit δ -fine

$$\delta(t) = \begin{cases} 1 - t & \text{si } t \in [0, 1[, \\ 2/3 & \text{si } t = 1. \end{cases}$$

Calculer alors S(f, P) pour $f(x) = cos(\pi x)$

3. Soient f une fonction dérivable sur [0,1], $x_0 \in]0,1[$ et h>0 tel que $x_0+h\in]0,1[$. Montrer que l'on a les inégalités suivantes :

$$\frac{f(x_0+h)-f(x_0)}{2\sqrt{x_0+h}} \leq \int_{\sqrt{x_0}}^{\sqrt{x_0+h}} f'(x^2) dx \leq \frac{f(x_0+h)-f(x_0)}{2\sqrt{x_0}}$$

4. Soit f_n la fonction définie sur [0,1] par

$$f_n(0) = n, \quad f_n(x) = \frac{1 - (1 - x)^n}{x}, \ x > 0.$$

Enfin, on pose

$$I_n = \int_0^1 f_n(x) \, \mathrm{d}x.$$

 $+ O_i \Gamma$ (a) Montrer que f_n est continue sur [0,1], et que I_n existe.

(b) Exprimer $I_n - I_{n-1}$ comme l'intégrale d'un polynôme, que l'on calculera.

(c) En déduire

$$\sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{n} C_{n}^{k} \frac{(-1)^{k+1}}{k}.$$

Université Aix-Marseille I

Licence, deuxième année

Faculté des sciences de Saint-Charles

Intégration 1

Partiel du 8 mars 2006 Sans document ni calculatrice

Note: la copie doit être bien présentée, lisible et propre. Les questions rédigées dans un style télégraphique seront affectées d'un nombre de points inférieur à celui du barème. Enfin, il sera enlevé un cinquième de point par faute d'orthographe.

Questions de cours

- 1. Donner la définition de l'intégrabilité d'une fonction f définie sur un intervalle compact [a, b].
- 2. Énoncer et démontrer le critère de Cauchy pour l'intégrabilité.
- 3. Rappeler les primitives des fonctions suivantes :

$$\cos(ax)$$
, $\log x$, $\frac{1}{1+x^2}$.

Exercices

1. Calculer les primitives suivantes :

$$\int \frac{1}{x^3(x^3-1)} \, \mathrm{d}x, \, \int \frac{x^n}{\mathrm{e}^x} \, \mathrm{d}x \, \text{et } \int \frac{1}{((x-1)^2-4)^2} \, \mathrm{d}x.$$

Dans la dernière, on pourra effectuer un changement de variable.

- 2. Soit δ une jauge sur l'intervalle [a,b]. Donner une preuve du lemme de Cousin (dont vous rappellerez l'énoncé) en vous inspirant de l'argumentation suivante : soit $\mathcal{C} \subset [a,b]$ l'ensemble des c tels qu'il existe une subdivision δ -fine sur [a,c]. Montrer que $\mathcal{C} \neq \emptyset$, que sup $\mathcal{C} = b$ et enfin que $b \in \mathcal{C}$.
- 3. Calculer l'intégrale suivante :

$$\int_0^{\pi/2} \sin^3(x) \cos^2(x) \, \mathrm{d}x.$$

Faculté des sciences, Saint-Charles

Intégration 1

Partiel du 7 mars 2007 Sans document ni calculatrice

Note: la copie doit être bien présentée, lisible et propre. Les réponses rédigées dans un style télégraphique seront affectées d'un nombre de points inférieur à celui du barème. Les fautes d'orthographe seront également prises en compte dans l'évaluation de la copie.

Question de cours

Énoncer et démontrer la formule d'intégration par parties.

Exercices

- 1. Soient [a, b] un intervalle compact de \mathbf{R} et $\mathbf{F} \subset [a, b]$ une partie fermée.
 - (a) Rappeler la définition de « fermé ».
 - (b) En déduire que le complémentaire de F est ouvert.
 - (c) Rappeler l'énoncé du lemme de Cousin.
 - (d) On se donne, pour tout élément x de F, un intervalle ouvert I_x qui contient x. Montrer qu'il existe une jauge δ sur [a,b] qui vérifie les propriétés suivantes :

- si
$$x \in \mathcal{F}$$
, alors $[x - \delta(x)/2, x + \delta(x)/2] \subset \mathcal{I}_x$,
- si $x \notin \mathcal{F}$, alors $[x - \delta(x)/2, x + \delta(x)/2] \cap \mathcal{F} = \emptyset$.

(e) Déduire de ces propriétés et du lemme de Cousin qu'il existe une famille finie d'intervalles $I_{x_k}, k=1,\ldots,n$ tels que

$$F \subset \bigcup_{k=1}^n I_{x_k}.$$

C'est le théorème de Heine-Borel.

2. Calculer les primitives suivantes :

$$\int \frac{\mathrm{d}x}{x^2 + 4}, \quad \int \frac{\mathrm{e}^x \, \mathrm{d}x}{1 + \mathrm{e}^{2x}}, \quad \int x \log x \, \mathrm{d}x.$$

3. Calculer la limite, quand α tend vers $+\infty$, de

$$I(\alpha) = \int_0^{\pi} e^{-\alpha x} \sin x \, dx.$$

- 4. On considère les deux courbes suivantes : $C_1 = \{(x,y) \in \mathbf{R}^2, 8x y^2 = 0\}$ et $C_2 = \{(x,y) \in \mathbf{R}^2, x^2 y = 0\}$.
- O_1 (a) Quelle est la nature des courbes C_1 et C_2 ?
 - (b) Tracer ces deux courbes sur un même graphique.
 - (c) Calculer les coordonnées des points d'intersection de C_1 et C_2 .
 - (d) Déterminer l'aire du domaine plan borné délimité par C₁ et C₂.

Corrigé du partiel 21 mars 05 Question de como 1. One jange om [a,b] est une application de [a,b] dans]0, +00[· Une subdivision pointée $P = \{(\overline{I}_{7}, t_{4}), ..., (\overline{I}_{n}, t_{m})\}$ est constituée des intervalles $I_{R} = [x_{R-1} \mid x_{R}]$ et des points t_{R} tels que $a = x_{0} \leq t_{1} \leq x_{1} \leq t_{2} \leq x_{2} \leq \dots \leq t \leq x_{n} = h$ $a=x_0 \leqslant t_1 \leqslant x_1 \leqslant t_2 \leqslant x_2 \leqslant \cdots \leqslant t_n \leqslant x_n = b$. • Elle est δ -fine ai $I_{R} \subseteq \left[t_{R} - \frac{\delta(t_{R})}{2}, t_{R} + \frac{\delta(t_{R})}{2}\right]$ pour tout θ . 2. Intégration par parties: Saint F et G dérivables en tout $x \in [a,b]$. Dans le cas on F G est intégrable (ce qui égriment à FG'intégrable) on a la relation

SFG = [FG] a - SFG' (x)Démonstration: FG est dévivable et par conséquent $\int_{a}^{b} (FG)' = \int_{a}^{b} FG' + \int_{a}^{b} FG'$ d'ai on dédint la formule (X) puisque S(FG) = [FG] à Exercise 1. $\int (x^{2}+x+1) e^{x} dx = (x^{2}+x+1) e^{x} - \int (2x+1) e^{x} dx$ $(F_{1}^{1}=e^{x}, G_{1}=x^{2}+x+1)$ et $\int (2x+1)e^{x} dx = (2x+1)e^{x} - \int 2e^{x} dx$ et compte teme que $\int 2e^{x} dx = 2e^{x} + C$ on en déduit $\int (x^2 + x + 1) e^{x} dx = (x^2 + x + 1 - 2x - 1 + 2) e^{x} + C$ $= (x^2 - x + 2) e^{x} + C$

$$\frac{1}{(x+2)(x^2+2x+5)} = \frac{a}{x+2} + \frac{bx+c}{x^2+2x+5}$$

$$\Rightarrow \frac{1}{x^2+2x+5} = a + (x+2)\frac{bx+c}{x^2+2x+5} \quad \text{of on (ance } x=-2) \quad \frac{1}{5} = a \quad ;$$
et
$$\frac{1}{x+2} = (x^2+2x+5)\frac{a}{x+2} + (bx+c) \quad \text{of on (ance } x=-1+2i)$$

$$\frac{1}{1+2i} = 0 + (-b+2ib+c)$$

$$\frac{1-2i}{5} = (c-b) + i \quad 2b \Rightarrow \boxed{b=-\frac{1}{5}}, \boxed{c=0}.$$
On a done
$$\frac{1}{(x+2)(x^2+2x+5)} = \frac{1}{5}\frac{1}{x+2} - \frac{1}{5}\frac{x}{x^2+2x+5}$$

$$(1iliano la dinivia de x^2+2x+5 , qui est $2x+2$

$$\frac{1}{(x+2)(x^2+2x+5)} = \frac{1}{5}\frac{1}{x+2} - \frac{1}{10}\frac{2x+2}{x^2+2x+5} + \frac{1}{10}\frac{2}{x^2+2x+5}$$

$$\int \frac{dx}{(x+2)(x^2+2x+5)} = \frac{1}{5}\int \frac{dx}{x+2} - \frac{1}{10}\int \frac{2x+2}{x^2+2x+5} + \frac{1}{10}\frac{2}{x^2+2x+5}$$

$$= \frac{1}{5}\log|x+2| - \frac{1}{10}\log|x^2+2x+5| + \frac{1}{10}\arctan\frac{x+1}{2} + (\frac{1}{5}\log|x+2| - \frac{1}{10}\log|x+2| - \frac{1}{10}\log|x+2| - \frac{1}{10}\log|x+2| + \frac{1}{10}\log|x+2|$$$$

The fourt chain $0 = x_0 \le t_1 \le x_1 \le t_2 \le x_2 = 1$.

On suppose $t_1 = \frac{x_0 + x_1}{2}$ done $t_1 = \frac{x_1}{2}$.

Remarques give t_2 ne paut pao être 1 paire give en $t_2 \le 1$ paire $t_3 \le 1$ paire $t_4 \le 1$ paire $t_4 \le 1$ paire $t_5 \le 1$ paire $t_7 = 1$ paire

$$f(x) = cos(\pi x), \qquad S(f, P) = |I_1| f(t_1) + |I_2| f(t_2)$$

$$= \frac{2}{3} cos(\pi \frac{1}{3}) + \frac{1}{3} cos(\pi)$$

$$= 0.$$

Pan changement de variable
$$(x = \sqrt{u})$$
 on a $\int_{x=\sqrt{x_0+h}}^{x=\sqrt{x_0+h}} f'(x^2) dx = \int_{u=x_0}^{u=x_0+h} f'(u) \frac{du}{2\sqrt{u}}$

mais
$$\sqrt{x_0} \le \sqrt{u} \le \sqrt{x_0 + h}$$
, par consignent $\frac{1}{2\sqrt{x_0 + h}} \le \frac{1}{2\sqrt{u}} \le \sqrt{x_0 + h}$ et $\int_{x_0}^{1} |u| \frac{du}{2\sqrt{u}} \le \int_{x_0}^{1} |u| \frac{du}{2\sqrt{u}} \le \int_{x_0}^{1} |u| \frac{du}{2\sqrt{x_0 + h}} \le \int_{x_0}^{1} |u| \frac{du}{2\sqrt{u}} \le \int_{x_0}^{1} |u| \frac{du}{2\sqrt{x_0 + h}} \le \int$

on a
$$\frac{1}{2\sqrt{n_0+h}}\left(f(n_0+h)-f(n_0)\right) \leq \int_{\infty}^{\sqrt{n_0+h}} f'(x^2) dx \leq \frac{1}{2\sqrt{n_0}}\left(f(n_0+h)-f(x_0)\right)$$

Exercise 4.

(a)
$$f_n$$
 est continue en tout $x \in]0,1]$ parce que c'est le quitient de la foretion continue $1-(1-x)^n$ par la fonetion continue non nulle x .

lein
$$f_n(x) = -\lim_{x\to 0} \frac{(1-x)^m - 1}{x} = -dénivée de la fonction $(1-x)^m$
 $x\to 0$ (en $x=0$).
Or la dérivée de $(1-x)^m$ est $-n(1-x)^{m-n}$, et elle vout$$

Done lim
$$f(x) = n$$
. Comme l'énancé a posé $f(0) = n$, la fonction f est continue aussi en $x = 0$.

$$f$$
 continue en tout $x \in [0, 1] = f$ intégrable en $[0, 1]$

(b)
$$\overline{I}_{n} - \overline{I}_{n-1} = \int_{-\infty}^{\infty} \frac{1 - (n-x)^{n-1}}{x} dx - \int_{-\infty}^{\infty} \frac{1 - (n-x)^{n-1}}{x} dx$$

$$= \int_{-\infty}^{\infty} \frac{1 - (n-x)^{n-1}}{x} dx - \int_{-\infty}^{\infty} \frac{1 - (n-x)^{n-1}}{x} dx$$

$$= \int_{-\infty}^{\infty} \frac{1 - (n-x)^{n-1}}{x} dx = \int_{-\infty}^{\infty} \frac{(n-x)^{n-1}}{x} dx = \int_{-\infty}^{\infty} \frac{(n-x)$$

```
Conigé du partiel 8 mars 2006
(Exercice 2, démonstration du lemme de Cousin)
 Le lemme de Cousin dit que pour toute jange sur [a, b]
 ( 'est à dire pointante application S: [a,b] \longrightarrow \mathbb{R}_+^*)
 I existe une subdivisión 5- fine.
 On peut le démontrer en utilisant l'ensemble:
  C = \text{ensemble des } C \in [a,b] tels qu'il esciste une subdivision \sigma-fine
  de l'intervalle [a, c].
 Exemple: poin c=a, il existe une subdivision J-fine de [a, a],
  cette subdivision n'a qu'un intervalle qui est l'intervalle [a, a),
  et elle est \delta-fine parce que \left[a,a\right]\subset \left[a-\frac{\delta(a)}{2},a+\frac{\delta(a)}{2}\right].
 Soit A = \text{sup}(C).

L'intervalle \left[ 0 - \frac{5(a)}{2}, A + \frac{5(a)}{2} \right] contient un élément c
                                                                                de C
 ( sinon a re serait pas la borne supérieme de C).
  Done [a, c] admet une subdivision 5- fine:
              a=x_0 x_1 x_2 x_3 x_4 x_5 x_5 x_5
  ance, dans chaque intervalle I = [x_{B-1}, x_B], un point de marquage t_B.
  Complétons cette subdivision par un (n+1)^{\frac{1}{2}} intervalle:

I_{n+1} = \left[ c, a + \frac{\delta(a)}{2} \right] \left( ai \quad a + \frac{\delta(a)}{2} \leq b \right)

or \left( c, b \right) = \left( ai \quad a + \frac{\delta(a)}{2} > b \right).
  Catte subdivision est aussi \delta-fine puis qu'elle vérifie la conduition I_{n+1} \subset \left[ A - \frac{\delta(A)}{2} \right] (vu qu'on a choisi c dans cet intervalle).
```

Le cas $A+\frac{5(a)}{2}$ $\leq b$ est impossible: dans ce cas la subdivisión qu'on a construite va sjusqu'à $A+\frac{5(a)}{2}$, done $a+\frac{5(a)}{2}$ appartient à C, ce qui contredit A= A+p(C) (les éléments de C sont forcément $\leq A$). Seul le cas $A+\frac{5(a)}{2}>b$ est possible; mais dans ce cas on a construit une subdivisión de [a,b] et c'est ce qu'il fallait d'enontres.