$$(A \cup B) \cap C \subset (A \cap B) \cup C$$
.

.....

2) Soit f une application de \mathbb{R} dans \mathbb{R} , et x_0 un nombre réel. Écrire la négation de la phrase suivante: Pour tout $\varepsilon > 0$ il existe $\alpha > 0$ tel que tous les réels x qui vérifient $|x - x_0| \le \alpha$, vérifient aussi $|f(x) - f(x_0)| \le \varepsilon$. (sur 2 pts)

.....

3) Soient f et g deux applications de [0;1] dans [0;1], définies par

$$f(x) = \frac{x}{2}$$
 et $g(x) = 4x(x-1)$.

a) Compléter le tableau de variations de la fonction g: (sur 1 pt)

x	0 1
$g'(x) = \dots$	
g(x)	

b) Remplir le tableau suivant par des oui et des non: (sur 2 pts)

		f	g	$f \circ g$	$g \circ f$
	injective				
	surjective				
	bijective				

c) Déterminer les intervalles $g\left(\left[\frac{7}{16}; \frac{3}{4}\right]\right)$ et $g^{-1}\left(\left[\frac{7}{16}; \frac{3}{4}\right]\right)$. (sur 2+2 pts)

.....