NOM:	LICENCE $1^{\grave{e}me}$ année
Groupe:	Mathématiques Générales

Interrogation n°1

Exercice 1

Soient E un ensemble non vide et A et B les sous-ensembles de E, une application f de P(E) dans $P(E)^2$ définie par, pour tout X élément de $P(E), f(X) = (X \cup A, X \cup B)$.

- 1) Montrer que, si f est injective, $A \cap B = \emptyset$.
- 2) Montrer que la réciproque est vraie.
- 3) Montrer que, si f est surjective, $A = B = \emptyset$ (on considère le couple (\emptyset, \emptyset)); dans ce cas, que vaut f(X)? En considérant (E, \emptyset) , en déduire que f n'est pas surjective.

Exercice 2

Soit g la fonction réelle définie par $g(x) = \frac{1}{x^2 - 3x + 2}$. 1.Donner le domaine de définition D_g de g.

- 2. Etudier la fonction g (les limites, le tableau de variation et le graphe).
- $3. D {\'e}terminer\ l'ensemble\ image.$
- 4. La fonction g est-elle injective sur $D_g\,?$ Est-elle surjective sur $R\,?$
- 5. Soit la fonction $h:]2, +\infty[\longrightarrow]0, +\infty[$ définie par $h(x) = g(x), \forall x \in]2, +\infty[$. Montrer que h est bijective, puis donner sa réciproque.